A short course on versatile processing & inversion of ERT monitoring data
2025-02-17
aims at making:
pyGIMLi
objects (Mesh
, DataContainer
, matrix types, etc.), geostatistical vs. smoothness regularization, treatment of subsurface regions, adding prior data.LSQRinversion
framework to include parameter relations (from Wagner et al., 2019)MultiFrameModelling
framework for temporally/spectrally/spatially constraintsTimelapseERT
class with different strategies, e.g. 4D inversionhttps://github.com/gimli-org/gimli/releases
pip install pygimli
for easier installation (e.g. on Google Colab)data.show('i')
, mesh.show('res')
, data.estimateError()
)submesh()
, extract2dUpperSurfaceMesh()
, extract2dSlice()
“In open source, we feel strongly that to really do something well, you have to get a lot of people involved.”
– Linus Torvalds
#pyGIMLi
chat on Mattermost!ERT
moduleERTManager
for data inversion and model outputERTIPManager
for FD or TD Induced Polarization (IP)pyBERT
module (FDIP
and TDIP
)TimelapseERT
classCrossholeERT
).showTimeline()
t
, tmin
, tmax
, kmax
).mask()
)CrossholeERT
classTimelapseERT
with some extra functionsextractSubset
to retrieve (3D) parts or (2D) planesMake whole processing chain transparent and reproducible
Github Repository to collect published data sets and notebooks
Name | Reference | dim | time | data | Info |
---|---|---|---|---|---|
pyGIMLi | (Rücker et al., 2017) | 2D | 10 | 740 | synthetic tracer |
ALERT | (Kuras et al., 2009) | 2D xh | 35 | 1200 | 9 boreholes |
Hillslope | (Hübner et al., 2015) | 2D to | 24 | 800 | min. length |
Infiltration | (Hübner et al., 2017) | 3D | 200 | 2850 | min. length |
Tsunami | (Ronczka et al., 2014) | 2.5D | 900 | 225 | lab experiment |
Steelcase | (Ronczka et al., 2015) | 3D sc | 9 | 450 | SEM, regions |
SAMOS | (Ronczka et al., 2020) | 1.5D | 7 | 3000 | CEM |
DynaDeep | Skibbe talk | 2D to | 10 | 3000 | topography change |
TestUM | Günther talk | 3D xh | 70 | 2200 | heat experiment |
GELMON25
repository.pg
environment with required dependencies (particularly pygimli=1.5.3
).Follow without a local installation
You can also visit https://colab.research.google.com, open an empty notebook and type !pip install pygimli tetgen
.
Let’s find out what you already know and what you’re interested in!