A short course on versatile processing & inversion of ERT monitoring data
2025-02-17

aims at making:
pyGIMLi objects (Mesh, DataContainer, matrix types, etc.), geostatistical vs. smoothness regularization, treatment of subsurface regions, adding prior data.
LSQRinversion framework to include parameter relations (from Wagner et al., 2019)MultiFrameModelling framework for temporally/spectrally/spatially constraintsTimelapseERT class with different strategies, e.g. 4D inversionhttps://github.com/gimli-org/gimli/releases
pip install pygimli for easier installation (e.g. on Google Colab)data.show('i'), mesh.show('res'), data.estimateError())submesh(), extract2dUpperSurfaceMesh(), extract2dSlice()“In open source, we feel strongly that to really do something well, you have to get a lot of people involved.”
– Linus Torvalds
#pyGIMLi chat on Mattermost!ERT moduleERTManager for data inversion and model outputERTIPManager for FD or TD Induced Polarization (IP)pyBERT module (FDIP and TDIP)TimelapseERT classCrossholeERT).showTimeline()t, tmin, tmax, kmax).mask())CrossholeERT classTimelapseERT with some extra functionsextractSubset to retrieve (3D) parts or (2D) planesMake whole processing chain transparent and reproducible
Github Repository to collect published data sets and notebooks
| Name | Reference | dim | time | data | Info |
|---|---|---|---|---|---|
| pyGIMLi | (Rücker et al., 2017) | 2D | 10 | 740 | synthetic tracer |
| ALERT | (Kuras et al., 2009) | 2D xh | 35 | 1200 | 9 boreholes |
| Hillslope | (Hübner et al., 2015) | 2D to | 24 | 800 | min. length |
| Infiltration | (Hübner et al., 2017) | 3D | 200 | 2850 | min. length |
| Tsunami | (Ronczka et al., 2014) | 2.5D | 900 | 225 | lab experiment |
| Steelcase | (Ronczka et al., 2015) | 3D sc | 9 | 450 | SEM, regions |
| SAMOS | (Ronczka et al., 2020) | 1.5D | 7 | 3000 | CEM |
| DynaDeep | Skibbe talk | 2D to | 10 | 3000 | topography change |
| TestUM | Günther talk | 3D xh | 70 | 2200 | heat experiment |
GELMON25 repository.pg environment with required dependencies (particularly pygimli=1.5.3).Follow without a local installation
You can also visit https://colab.research.google.com, open an empty notebook and type !pip install pygimli tetgen.
Let’s find out what you already know and what you’re interested in!

